
1

• Before investigating Propagation Algorithms, we should formalise a

number of concepts that will be used

– Constraints and Constraint Network

– Partial and Total Solutions

– Satisfaction and Consistency

Finite Domains

2

Definition (Domain of a Variable):

– The domain of a variable is the (finite) set of values that can be

assigned to that variable.

• Given some variable X, its domain will be usually referred to as

dom(X) or, simply, Dx.

• Example:

The N queens problem may be modelled by means of N variables, X1

to Xn, all with the domain from 1 to n.

Dom(Xi) = {1,2, ..., n} or Xi :: 1..n.

Basic Definitions - Domain

3

• To formalise the notion of the state of a variable (i.e. its assignment

with one of the values in its domain) we have the following

Definition (Label):

– A label is a Variable-Value pair, where the Value is one of the

elements of the domain of the Variable.

• The notion of a partial solution, in which some of the variables of the

problem have already assigned values, is captured by the following

Definition (Compound Label):

– A compound label is a set of labels with distinct variables.

Basic Definitions - Labels

4

• We come now to the formal definition of a constraint

Definition (Constraint):

– Given a set of variables, a constraint is a set of compound labels

on these variables.

• Alternatively, a constraint may be defined simply as a relation, i.e. a

subset of the cartesian product of the domains of the variables

involved in that constraint.

• For example, given a constraint Cijk involving variables Xi, Xj and Xk,

then

Cijk dom(Xi) x dom(Xj) x dom(Xk)

Basic Definitions - Constraint

5

• Given a constraint C, the set of variables involved in that constraint is

denoted by vars(C).

• Simetrically, the set of constraints in which variable X participates is

denoted by cons(X).

• Notice that a constraint is a relation, not a function, so that it is

always Cij = Cji.

• In practice, constraints may be specified by

• Extension: through an explicit enumeration of the allowed

compound labels;

• Intension: through some predicate (or procedure) that

determines the allowed compound labels.

Basic Definitions - Constraint

6

• For example, the constraint C13 involving X1 and X3 in the 4-queens

problem, may be specified

• By extension (label form):

C13 = {{X1-1,X3-2},{X1-1,X3-4},{X1-2,X3-1},{X1-2,X3-3},

{X1-3,X3-2},{X1-3,X3-4},{X1-4,X3-1},{X1-4,X3-3}}.

or, in tuple (relational) form, omitting the variables

C13 =

{<1,2>,<1,4>,<2,1>,<2,3>,<3,2>,<3,4>,<4,1>,<4,3>}.

• By intension:

C13 = (X1 X3) (1+X1 3+X3) (3+X1 1+X3).

Basic Definitions – Constraint Definition

7

Definition (Constraint Arity):

– The constraint arity of some constraint C is the number of

variables over which the constraint is defined, i.e. the cardinality

of the set Vars(C).

• Despite the fact that constraints may have an arbitrary arity, an

important subset of the constraints is the set of binary constraints.

• The importance of such constraints is two fold

• All constraints may be converted into binary constraints

• A number of concepts and algorithms are appropriate for

these constraints.

Basic Definitions – Constraint Arity

8

Conversion to Binary Constraints

• An n-ary constraint, C, defined by k compound labels on its

variables X1 to Xn, is equivalent to n binary constraints, C0i, through

the addition of a new variable, X0, whose domain is the set 1 to k.

In practice,

• The k n-ary labels may be sorted in some arbitrary order.

• Each of the n binary constraints C0i relates the new variable X0 with

the variable Xi.

• The compound label {Xi-vi, X0-j} belongs to constraint C0i iff Xi-vi

belongs to the j-th compound label that defines C.

Basic Definitions – Binary Constraints

9

Example:

Given variables X1 to X3, with domains 1 to 3, the following ternary

constraint C is composed of 6 labels.

C(X1, X2, X3) = {<1,2,3>,<1,3,2>,<2,1,3>,<2,3,1> ,<3,1,2>,<3,2,1>}

Each of the labels may be associated to a value from 1 to 6

1 : <1,2,3>, 2 : <1,3,2>, ... , 6: <3,2,1>

Now, the following binary constraints, C01 to C03, are equivalent to

the initial ternary constraint C

C01(X0, X1)= {<1,1>, <2,1>, <3,2>, <4,2>, <5,3>, <6,3>}

C02(X0, X2)= {<1,2>, <2,3>, <3,1>, <4,3>, <5,1>, <6,2>}

C03(X0, X3)= {<1,3>, <2,2>, <3,3>, <4,1>, <5,2>, <6,1>}

Basic Definitions – Binary Constraints

10

Definition (Constraint Satisfaction 1):

– A compound label satisfies a constraint if their variables are the

same and if the compound label is a member of the constraint.

• In practice, it is convenient to generalise constraint satisfaction to

compound labels that strictly contain the constraint variables.

Definition (Constraint Satisfaction 2):

– A compound label satisfies a constraint if its variables contain

the constraint variables and the projection of the compound

label to these variables is a member of the constraint.

Basic Definitions –Constraint Satisfaction

11

Definition (Constraint Satisfaction Problem):

– A constraint satisfaction problem is a triple <V, D, C> where

• V is the set of variables of the problem

• D is the domain(s) of its variables

• C is the set of constraints of the problem

Definition (Problem Solution):

– A solution to a Constraint Satisfaction Problem P, defined as the

tuple <V, D, C>, is a compound label over the variables V of the

problem, which satisfies all the constraints in C.

Basic Definitions –Constraint Satisfaction Problem

12

• For convenience, the constraints of a problem may be considered

as forming a special graph.

Definition (Constraint Graph or Network):

– The Constraint Graph or Network of a binary constraint

satisfaction problem is defined as follows

• There is a node for each of the variables of the problem.

• For each non-trivial constraint of the problem, involving one

or two variables, the graph contains an arc linking the

corresponding nodes.

• When the problems include constraints with arbitrary arity, the

Constraint Network may be formed after converting these

constraints on its binary equivalent.

Basic Definitions – Constraint Graph

13

• When it is not convenient for some reason to convert constraints to

their binary equivalent, the problem may be represented by an

hiper-graph.

Definition (Constraint Hyper-Graph):

– Any constraint satisfaction problem with arbitrary n-ary

constraints may be represented by a Constraint Hyper-Graph

formed as follows:

• There is a node for each of the variables of the problem.

• For each constraint of the problem, the graph contains an

hiper-arc linking the corresponding nodes.

• Of course, when the problem has only binary constraints, the hiper-

graph degenerates into the simpler graph.

Basic Definitions – Constraint Hiper-Graph

14

Example:

The 4 queens problem may be specified by the following constraint
network:

Example: 4 - Queens

X1 :: 1..4

X4 :: 1..4

X3 :: 1..4X2 :: 1..4

C12

C23

C14

C24

C34

C13

<1,2>, <1,4>, <2,1>, <2,3>,

<3,2>, <3,4>, <4,1>, <4,3>

15

Definition (Complete Constraint Network):

– A constraint netwok is complete, when there is an arc

connecting any two nodes of the graph (i.e. when there is a

constraint over any pair of variables).

• The 4 queens problem (in fact, any n queens problem) has a

complete graph.

• However, this is often not the case: most graphs are sparse. In this

case, it is important to measure the density of the constraint

network.

• Definition (Density of a Constraint Graph):

– The density of a constraint graph is the ratio between the

number of its arcs and the number of arcs of a complete graph

on the same number of nodes

Basic Definitions – Graph Density

16

• In principle, the “difficulty” of a constraint problem is related to the

density of its graph.

• Intuitively, the denser the graph is, the more difficult the problem

becomes, since there are more opportunities to invalidate a

compound label.

• It is important to distinguish between the difficulty of a problem and

the difficulty of solving the problem.

– In particular, a difficult problem may be so difficult that it is trivial

to find it to be impossible!

• The “difficulty” of a problem is also related to the difficulty of

satisfying each of its constraints. Such difficulty may be measured

through its “tightness”.

Basic Definitions – Problem Difficulty

17

Definition (Tightness of a Constraint):

– Given a constraint C on variables X1 ... Xn, with domains D1 to

Dn, the tightness of C is defined as the ratio between the number

of labels that define the constraint and the size (i.e. the

cardinality) of the Cartesian product D1 x D2 x .. Dn.

• For example, the tightness of constraint C13 of the 4 queens

problem, on variables X1 and X3 with domains 1..4

C13 = {<1,2>, <1,4>, <2,1>, <2,3>, <3,2>, <3,4>, <4,1>, <4,3>}

is 1/2, since there are 8 tuples in the relation out of the possible 16

(4*4).

• The notion of tightness may be generalised for the whole problem.

Basic Definitions – Constraint Tightness

18

• Definition (Tightness of a Problem):

– The tightness of a constraint satisfaction problem with variables

X1 ... Xn, is the ratio between the number of its solutions and the

cardinality of the cartesian product

D1 x D2 x .. Dn.

• For example, the 4 queens problem, that has only two solutions

<2,4,1,3> e <3,1,4,2>

has tightness 2/(4*4*4*4) = 1/128.

Basic Definitions – Problem Tightness

19

• The difficulty in solving a constraint satisfaction problem is related

both with the

– The density of its graph and

– Its tightness.

• As such, when testing algorithms to solve this type of problems, it is

usual to generate random problem instances, parameterised not

only by the number of variables and the size of their domains, but

also by the density of its graph and the tightness of its constraints.

• The study of these issues has led to the conclusion that constraint

satisfaction problems often exhibit a phase transition, which should

be taken into account in the study of the algorithms.

• This phase transition typically contains the most difficult instances of

the problem, and separates the instances that are trivially satisfied

from those that are trivially insatisfiable.

Basic Definitions – Constraint Tightness

20

Basic Definitions – Phase Transition in SAT

• For example, in SAT, it has been found that the phase transition

occurs when the ratio of clauses to variables is around 4.3.

0 5 10 15

clauses / # variables

d
i
f
f
i
c
u
l
t
y

4.3

21

• Another issue to consider in the difficulty of solving a constraint

satisfaction problem is the potential existence of redundant values

and labels in its constraints.

Definition (Redundant Value):

– A value in the domain of a variable is redundant, if it does not

appear in any solution of the problem.

Definition (Redundant Label):

– A compound label of a constraint is redundant if it is not the

projection to the constraint variables of a solution to the whole

problem.

• Redundant values and labels increase the search space uselessly,

and should thus be avoided. There is no point in maintaining a value

that does not appear in any solution !

Basic Definitions – Redundancy

22

Example:

The 4 queens problem only admits two solutions:

<2,4,1,3> and <3,1,4,2>.

• Hence, values 1 and 4 are redundant in the domain of variables X1

and X4, and values 2 and 3 are redundant in the domain of variables

X2 and X3.

• Regarding redundant labels, labels <2,3> and <3,2> are redundant

in constraint C13.

Basic Definitions – Redundancy

23

Example:

The 4 queens problem, which only admits the two solutions

<2,4,1,3> e <3,1,4,2> may be “simplified” by elimination of the

redundant values and labels.

Basic Definitions – Redundancy

X1 in 1,2,3,4

X4 in 1,2,3,4

X3 in 1,2,3,4X2 in 1,2,3,4

C12

R23

R14

C24

C34

C13

{<1,2>, <1,4>, <2,1>, <2,3>,

<3,2>, <3,4>, <4,1>, <4,3>}

24

• Of course, any problem should be equivalent to any of its simplified

versions. Formally,

Definition (Equivalent Problems):

– Two problems P1 = <V1, D1, C1> and P2 = <V2, D2, C2> are

equivalent iff they have the same variables (i.e. V1 = V2) and

the same set of solutions.

• The “simplification” of a problem may also be formalised

Definition (Reduced Problem):

– A problem P=<V,D,C> is reduced to P’=<V’, D’, C’> if

• P e P’ are equivalent;

• The domains D’ are included in D; and

• The constraints C’ are at least as restrictive as those in C.

Basic Definitions – Equivalent Problems

25

• As shown before, and independently of any problem reduction, a

generate and test procedure to solve a Constraint Satisfaction

Problem is usually very inefficient.

– Nevertheless, this is the approach taken in local search methods

(simulated annealing or genetic algorithms) – although mostly in an

optimisation context !

• It is thus often preferable to use a solving method that is

constructive and incremental, whereby a compound label is being

completed (constructive), one variable at a time (incremental), until

a solution is reached.

• However, one must check that at every step in the construction of a

solution the resulting label has still the potential to reach a complete

solution.

Constraint Solving Methods

26

• Ideally, a compound label should be the projection of some problem

solution.

• Unfortunately, in the process of solving a problem, its solutions are

not known yet!

• Hence, one may use a notion weaker than that of a (complete)

solution, namely

Definition (k-Partial Solution):

– A k-partial solution of a constraint solving problem P, defined as

P = <V,D,C>, is a compound label on a subset of k of its

variables, Vk, that satisfies all the constraints in C whose

variables are included in Vk.

Constraint Solving Methods

27

• This is of course, the basis of the solving methods that use some

form of backtracking. If conveniently performed, backtracking may

be regarded as a tree search, where the partial solutions

correspond to the internal nodes of the tree and complete solutions

to its leaves.

Constructive Solving Methods

2

4

1

3

31 4

1

4

2

28

• Clearly, the more reduced a problem is, the easier it is, in principle,

to solve it.

• Given a problem P=<V,D,C> with n variables X1,..,Xn the potential

search space where solutions can be found (i.e. the leaves of the

search tree with compound labels {<X1-v1>, ..., <Xn-vn>}) has

cardinality

#S = #D1 * #D2 * ... * #Dn

• Assuming identical cardinality (or some kind of average of the

domains size) for all the variable domains, (#Di = d) the search

space has cardinality

#S = dn

which is exponential on the “size” n of the problem.

Problem Search Space

29

Reduction of the Search Space

• If instead of the cardinality d of the initial problem, one solves a

reduced problem whose domains have lower cardinality d’ (<d) the

size of the potential search space also decreases exponentially!

S’/S = d’n / dn = (d’/d)n

• Such exponential decreases may be very significant for

“reasonably” large values of n, as shown in the table.

10 20 30 40 50 60 70 80 90 100

7 6 4.6716 21.824 101.95 476.29 2225 10395 48560 226852 1E+06 5E+06

6 5 6.1917 38.338 237.38 1469.8 9100.4 56348 348889 2E+06 1E+07 8E+07

5 4 9.3132 86.736 807.79 7523.2 70065 652530 6E+06 6E+07 5E+08 5E+09

4 3 17.758 315.34 5599.7 99437 2E+06 3E+07 6E+08 1E+10 2E+11 3E+12

3 2 57.665 3325.3 191751 1E+07 6E+08 4E+10 2E+12 1E+14 7E+15 4E+17

d d'

S/S'

n

30

• In practice, this potential narrowing of the search space has a cost

involved in finding the redundant values (and labels).

• A detailed analysis of the costs and benefits in the general case is

extremely complex, since the process depends highly on the

instances of the problem to be solved.

• However, it is reasonable to assume that the computational effort

spent on problem reduction is not proportional to the reduction

achieved, becoming less and less efficient.

• After some point, the gain obtained by the reduction of the search

space does not compensate the extra effort required to achieve

such reduction.

Reduction of the Search Space

31

Reduction of the Search Space

Qualitatively, this process may be represented by means of the following

graph

R - Reduction Cost

S- Search Cost

R+S

Combined Cost

Effort spent in solving the problem

Amount of Reduction Achieved

32

• The effort in reducing the domains must be considered within the

general scheme to solve the problem.

• In Constraint Logic Programming, the specification of the constraints

precedes the enumeration of the variables.

Problem(Vars):-

Declaration of Variables and Domains,

Specification of Constraints,

Labelling of the Variables.

• However, the execution model alternates enumeration with

propagation, making it possible to reduce the problem at various

stages of the solving process.

Reduction of the Search Space

33

• Given a problem with n variables X1 to Xn the execution model

follows the following pattern:

Declaration of Variables and Domains,

Specification of Constraints,

indomain(X1), % value selection with backtraking

propagation, % reduction of problem (X2 to Xn)

indomain(X2),

propagation, % reduction of problem (X3 to Xn)

...

indomain(Xn-1)

propagation, % reduction of problem Xn

indomain(Xn)

Reduction of the Search Space

34

• Once formally defined the notion of problem reduction, one must

discuss the actual procedures that may be used to achieve it.

• First of all, one must ensure that whatever procedure is used, the

reduction keeps the problem equivalent to the initial one.

• Here we have a small problem, since the definition of equivalence

requires the solutions to be the same and we do not know in general

what the solutions are!

• Nevertheless, the solutions will be the same if in the process of

reduction we have the guarantee that “no solutions are lost”.

• Such guarantees are met by several criteria.

Domain Reduction – Consistency Criteria

35

• Consistency criteria enable to establish redundant values in the

variables domains in an indirect form, i.e. requiring no prior

knowledge on the set of problem solutions.

• Hence, procedures that maintain these criteria during the

“propagation” phases, will eliminate redundant values and so

decrease the search space on the variables yet to be enumerated.

• In constraint satisfaction problems with binary constraints, the most

usual criteria are, in increasingly complexity order,

– Node Consistency

– Arc Consistency

– Path Consistency

Domain Reduction – Consistency Criteria

36

Definition (Node Consistency):

– A constraint satisfaction problem is node-consistent if no value

on the domain of its variables violates the unary constraints.

• This criterion may seem both obvious and useless. After all, who

would specify a domain that violates the unary constraints ?!

• However, this criterion must be regarded within the context of the

execution model that incrementally completes partial solutions.

Constraints that were not unary in the initial problem become so

when one (or more) variables are enumerated.

Domain Reduction – Node Consistency

37

Example:

• After the initial posting of

all the constraints, the

constraint network model

in the left models the 4

queens problem.

• After enumeration of the

variable X1, i.e. X1=1,

constraints C12, C13 and

C14 become unary !!

Domain Reduction – Node Consistency

X1 :: 1..4

X4 :: 1..4

X3 :: 1..4X2 :: 1..4

C12

C23

C14

C24
C34

C13

X4 :: 1..4

X3 :: 1..4X2 :: 1..4
C23

C24
C34

X2 1,2 X3 1,3

X4 1,4

38

• An algorithm that maintains node consistency should remove from

the domains of the “future” variables the appropriate values.

• Maintaining node consistency achieves a domain reduction similar

to what is achieved in propagation with a Boolean formulation.

Domain Reduction – Node Consistency

X4 :: 2,3

X3 :: 2,4X2 :: 3,4
C23

C24

C34

X2 1,2 X3 1,3

X4 1,4

X4 1,4

1 1

1 1

1 1

X2 1,2

X3 1,3

39

• Given the simplicity of the node consistency criterion, an algorithm

to maintain it is very simple and with low complexity.

• A possible algorithm is NC-1, below.

procedure NC-1(V, D, R);

for X in V

for v in Dx do

for Cx in {Cons(X): Vars(Cx) = {X}} do

if not satisfy(X-v, Cx) then

Dx <- Dx \ {v}

end for

end for

end for

end procedure

Maintaining Node Consistency

40

Space Complexity of NC-1

• Assuming n variables in the problem, each with d values in its

domain, and assuming that the variable’s domains are represented

by extension, a space nd is required to keep explicitly the domains

of the variables.

• For example, the initial domain 1..4 of variables Xi in the 4 queens

problem is represented by a Boolean vector (where 1 means the

value is in the domain) Xi = [1,1,1,1] or 1111.

• After enumeration X1=1, node consistency prunes the domain of

other variables to X1 = 1000, X2 = 0011, X3 = 0101 and X4 = 0110

• Algorithm NC-1 does not require additional space, so its space

complexity is O(nd).

Maintaining Node Consistency

41

Time Complexity of NC-1

– Assuming n variables in the problem, each with d values in its

domain, and taking into account that each value is evaluated

one single time, it is easy to conclude that algorithm NC-1 has

time complexity O(nd).

• The low complexity, both temporal and spatial, of algorithm NC-1,

makes it suitable to be used in virtually all situations by a solver.

• However, node consistency is rather incomplete, not being able to

detect many possible reductions.

Maintaining Node Consistency

42

• A more demanding and complex criterion of consistency is that of

arc-consistency

Definition (Arc Consistency):

– A constraint satisfaction problem is arc-consistent if,

• It is node-consistent; and

• For every label Xi-vi of every variable Xi, and for all

constraints Cij, defined over variables Xi and Xj, there must

exist a value vj that supports vi, i.e. such that the compound

label {Xi-vi, Xj-vj} satisfies constraint Cij.

Domain Reduction – Arc Consistency

43

Example:

• After enumeration of variable X1=1, and making the network node-

consistent, the 4 queens problem has the following constraint

network:

• However, label X2-3 has no support in variable X3, since neither

compound label {X2-3 , X3-2} nor {X2-3 , X3-4} satisfy constraint C23.

• Therefore, value 3 can be safely removed from the domain of X2.

Domain Reduction – Arc Consistency

X4 :: 2,3

X3 :: 2,4X2 :: 3,4
C23

C24

C34

X2 1,2 X3 1,3

X4 1,4

X4 1,4

1 1

1 1

1 1

X2 1,2

X3 1,3

44

• In fact, none (!) of the values of X3 has support in variables X2 and

X4., as shown below:

– label X3-4 has no support in variable X2, since none of the

compound labels {X2-3, X3-4} and {X2-4, X3-4} satisfy constraint

C23.

– label X3-2 has no support in variable X4, since none of the

compound labels {X3-2, X4-2} and {X3-2, X4-3} satisfy constraint

C34.

Domain Reduction – Arc Consistency

X4 1,4

1 1

1 1

1 1

X2 1,2

X3 1,3

45

• Since none of the values from the domain of X3 has support in

variables X2 e X4, maintenance of arc-consistency “empties” the

domain of X3!

• Hence, maintenance of arc-consistency not only prunes the domain

of the variables but also antecipates the detection of unsatisfiability

in variable X3 ! In this case, backtracking of X1=1 may be started

even before the enumeration of variable X2.

• Given the good trade-of between pruning power and simplicity of

arc-consistency, a number of algorithms have been proposed to

maintain it.

Domain Reduction – Arc Consistency

X4 1,4

1 1

1 1

1 1

X2 1,2

X3 1,3

46

Maintaining Arc Consistency: AC-6

Typical Complexity of algorithms AC-3, AC-4 e AC-6

(N-queens)

0

2000

4000

6000

8000

10000

12000

14000

16000

4 5 6 7 8 9 10 11

#
 t

es
ts

 a
nd

 o
pe

ra
ti

on
s

AC-3

AC-4

AC-6

queens

47

Maintaining Arc Consistency: AC-6

Typical Complexity of algorithms AC-3, AC-4 e AC-6

(randomly generated problems)

n = 12 variables, d= 16 values, density = 50%

0
2000
4000
6000
8000

10000
12000
14000
16000
18000
20000
22000

5 10 15 2
0

2
5

3
0

3
5

4
0

4
5

5
0

6
0

7
0

8
0

#
 t

es
ts

 a
nd

 o
pe

ra
ti

on
s

AC-3

AC-4

AC-6

Tightness (%)

48

Path Consistency

In addition to arc consistency, other types of consistency may be defined

for binary constraint networks.

Path consistency is a “classical” type of consistency, stronger than arc

consistency.

The basic idea of path consistency is that, in addition to check support in

the arcs of the constraint network between variables Xi and Xj, further

support must be checked in the variables Xk1, Xk2... Xkm that form a path

between Xi and Xj, i.e. whenever there are constraints Ci,k1, Ck1,k2, ...,

Ckm-1, km and Ckm,j.

In fact, it is possible to show this is equivalent to seek support in any

variable Xk,connected to both Xi and Xj.

49

Path Consistency

Definition (Path Consistency):

A constraint satisfaction problem is path-consistent if,

1. It is arc-consistent; and

2. For every pair of variables Xi and Xj, and paths Xi–Xi1–Xi2 - ... -

Xin–Xj, the direct constraint Ci,j is tighter than the composition of

the constraints in the path Ci,i1, Ci1,i2, ... , Cin,j.

In practice, every value vi in variable Xi must have support, not only

in some value vj from variable Xj but also in values vi1, vi2 , ... , vin

from the domain of the variables in the path.

50

k-Consistency

Node, arc and path consistency, are all instances of the more general

case of k-consistency.

Informally, a constraint network is k-consistent when for a group of k

variables, Xi1, Xi2, ... , Xik the values in each domain have support in

those of the other variables, considering this support in a global form.

The following is a classical example of the advantages of keeping a

global view on constraints

A node consistent network, that is not arc consistent

0 0

51

k-Consistency

An arc consistent network, that is not path consistent

0,1 0,1

0,1

A path-consistent network, that is not 4-consistent

0..2 0..2

0..2

0..2

52

k-Consistency

Definition (k-Consistency):

A constraint satisfaction problem (or constraint network) is

1-consistent if the values in the domain of its variables satisfy all

the unary constraints.

A network is k-consistent iff all its (k-1)-compound labels (i.e.

formed by k-1 pairs X-v) that satisfy the relevant constraints can be

extended with some label on any other variable, to form some

k-compound labels that make the network k-1 consistent (satisfy

the relevant constraints)

53

k-Consistency

Definition (Strong k-Consistency):

A constraint problem is strongly k-consistent, if and only if it is

i-consistent, for all i 1 .. k.

For example, the network below is 3-consistent, but not 2-consistent.

Hence it is not strongly 3-consistent.

The only 2-compound labels, which satisfy the

inequality constraints

{A-0,B-1}, {A-0,C-0}, and {B-1, C-0}

may be extended to the remaining variable

{A-0,B-1,C-0}.

However, the 1-compound label {B-0} cannot be

extended to variables A or C {A-0,B-0} !

0 0

0,1

B

CA

54

k-Consistency

As can be seen from the definitions, the three types of consistency

studied so far (node, arc and path consistency) are all instances of the

more general k-consistency or, rather, strong k-consistency).

Hence, a constraint network is

• node consistent iff it is strongly 1-consistent.

• arc consistent iff it is strongly 2-consistent.

• path consistent iff it is strongly 3-consistent.

55

Generalised Arc Consistency

In the general case of non-binary constraints and constraint networks, the

notion of node consistency and its enforcing algorithm NC-1 may be kept,

since they only regard unary constraints.

The generalisation of arc consistency for general n-ary constraint networks

(n > 2) is quite simple.

The concept of an arc must be replaced by that of an hyper-arc, and it

must be guaranteed that each value in the domain of a variable must be

supported by values in the other variables that share the same hyper-arc

(constraint).

Although less intuitive (what is a path in a hyper-graph?), path consistency

may still be defined by means of strong 3-consistency for hyper-graphs.

56

Constraint Dependent Consistency

The algorithms and consistency criteria considered so far take into no

account the semantics of specific constraints, handling them all in a

uniform way.

In practice, such approach is not very useful, since important gains may

be achieved by using specialised criteria and algorithms.

For example, regardless of more general schemes, it is not useful, for

inequality constraints (), when considered separately, to go beyond

simple node consistency.

In fact, for Xi Xj, one may only eliminate a value from a variable

domain, when the domain of the other is reduced to a singleton.

57

Constraint Dependent Consistency

Other more specific types of consistency may be used and enforced. For

example in the n queens problem, the constraint

no_attack(Xi, Xj)

should only be considered when the size of the domain of one of the

variables becomes reduced to 3 or less than 3 values.

In fact, if Xi maintains 4 values in the domain, all values in the domain of

Xj will have, at least, one supporting value in the domain of Xi.

This is because the constraint is symmetrical and any queen may only

attack 3 queens in a different row.

58

Bounds consistency

Another specific type of consistency that is very useful in numerical

constraints is “bounds-consistency”, often used with constraints such as

=<, <, = in ordered domains.

For example, consider constraint A = B, when variables A and B have

domains

A:: {1, 2, 3, 4, 5, 8, 10} and B :: {4, 6, 8, 12, 15, 20}

Whereas arc consistency would reduce the domains of the variables to

{4, 8} with some computational cost, enforcing simpler bounds

consistency would result in the domains

A:: {4, 5, 8} and B :: {4, 6, 8}

Although these domains keep redundant values, bounds consistency is

much easier to maintain.

59

Bounds consistency

Bounds consistency is specially interesting when dealing with very large

domains, and with n-ary constraints, as is common in numerical

problems.

Consider for example the ternary constraint A + B =< C, where variables

have domains 1..1000. Arc consistency would require checking 10003

triples <vA, vB, vC> !!!

Bounds consistency is much easier to achieve, by enforcing

min dom(C) >= min dom(A) + min dom(B)

max dom(A) =< max dom(C) - min dom(B)

max dom(B) =< max dom(C) - min dom(A)

60

Special case of Constraint Trees

Before addressing the need for heuristic search (even in reduced

networks), namely the importance of the order in which variables are

selected for enumeration, let us consider the special case of constraint

graphs that take the form of a tree.

If variable A is enumerated first,

with some value a from its

domain (A = a), the problem is

decomposed into 3 independent

subproblems.

A

E

CB

GF

D

H I

E

CB

GF

D

H I

61

Special case of Constraint Trees

In this case, to guarantee that the enumeration does not lead

immediately to unsatisfiability, value a from variable A must have support

in variables B, C e D.

This reasoning may proceed recursively, for each of the subtrees with

roots B, C and D. For example, enumeration of B (say, B = b) does not

lead to an immediate “dead end” if value b has support in E and F.

E

CB

GF

D

H I

62

Special case of Constraint Trees

Hence, a good heuristic to select the variable to enumerate is choosing

variables in the root of the tree (or subtree).

A

E

CB

GF

D

H I

In general, if enumeration of the variables in the tree is made from root

to leaves, such enumeration will not lead to unsatisfiability if the values

kept in any node have support in their children nodes.

63

Special case of Constraint Trees

Although this is not the case in general constraint graphs, as seen

before, constraint trees that are arc-consistent are also satisfiable.

In fact,

1. Using any heuristics that selects the root of the tree and its

subtrees,

2. This choice never leads to contradiction, since they have always

support in their children,

3. Such support is recursively guaranteed until the leaves.

Moreover, this directionality in the enumeration (from root to leaves)

enables the consideration of directed arc consistency, a weaker

criterion than full arc consistency, but sufficient to handle constraint

trees.

64

Special case of Constraint Trees

In the previous example, it is not

necessary that all values in the

domain of B, C and D have

support in the domain of A. The

only requirement is that all values

in the domain of A have support

in the domains of B, C and D.

When a value is chosen for A,

constraints on A and its

descendents become unary, and

the values from the domains of B,

C and D are removed by simple

node consistency.

A

E

CB

GF

D

H I

E

CB

GF

D

H I

65

Directed Arc Consistency

In general, one may define a criterion of directed arc consistency if, in

contrast to what has been considered, we consider a directed graph to

represent the constraint network (assuming some direction to each

constraint of the problem).

Definition (Directed Arc Consistency):

A constraint problem is directed arc consistent iff

1. It is node consistent; and

2. For every label Xi-vi of any variable Xi, and for any directed arc

aij (from Xi to Xj) corresponding to a constraint Cij, there is a

supporting value vj in the domain of Xj, i.e. the compound label

{Xi-vi, Xj-vj} satisfies constraint Rij.

66

Maintaining Directed Arc Consistency: DAC

As can be seen, algorithm DAC does not guarantee the elimination of all

redundant values, since it does not reexamine variables that could loose

support.

If in the general case this might be innadequate, this is not a problem in

the case of trees, if the arcs, which are directed in descending order of

the variables (the tree root has lowest number) are revised in

descending order, i.e. arcs closer to the leaves are revised first.

Then all the values of a node have guaranteed support in all the nodes

down to the leaves of a tree, although not necessarily on those upto the

tree root!

As shown before, if enumeration starts from the root, the unsupported

values are eliminated by node consistency.

67

Maintaining Directed Arc Consistency: DAC

Example: Take the constraint tree below

1

5

32

76

4

8 9

> >

>> > >>

>
X1 in {1, 3, 5, 7, 9},

X2 in {2, 4, 6}, X5 in {4,8}, X6 in {3, 9},

X3 in {1, 5, 7}, X7 in {3, 9},

X4 in {1, 5, 8}, X8 in {3, 7}, X9 in {2, 9}

After revising arc X9 -> X4 X4 in {1, 5, 8} % X9 >= 2

X8 -> X4 X4 in {1, 5, 8} % X8 >= 3

X7 -> X3 X3 in {1, 5, 7} % X7 >= 3

X6 -> X2 X2 in {2, 4, 6} % X6 >= 3

X5 -> X2 X2 in {2, 4, 6} % X5 >= 4

X4 -> X1 X1 in {1, 3, 5, 7, 9} % X4 >= 5

X3 -> X1 X1 in {1, 3, 5, 7, 9} % X3 >= 5

X2 -> X1 X1 in {1, 3, 5, 7, 9} % X2 >= 6

68

Maintaining Directed Arc Consistency: DAC

Example (cont): The enumeration became backtrack free !

X1 in {7, 9},

X2 in {6}, X5 in {4, 8}, X6 in {3, 9},

X3 in {5, 7}, X7 in {3, 9},

X4 in {5, 8}, X8 in {3, 7}, X9 in {2, 9}

X1 = 7 NC enforces X2 in {6}, X3 in {5}, X4 in {5}

X2 = 6 NC enforces X5 in {4}, X6 in {3},

X3 = 5 NC enforces X7 in {3},

X4 = 4 NC enforces X8 in {3}, X9 in {2},

X1 = 9 NC enforces X2 in {6}, X3 in {5,7}, X4 in {4, 8}

X2 = 6, X3 in {5,7}, enforces X7 = 3

X4 = 4 NC enforces X8 in {3}, X9 in {2}

or X4 = 8 NC enforces X8 in {3, 7}, X9 in {2}

1

5

32

76

4

8 9

> >

>> > >>

>

